TÍNH ĐẠO HÀM CẤP N

     
Bài viết này aquabigman.com trình làng đến các bạn đọc phương pháp Tính đạo hàm và vi phân cấp cao của hàm số

*

1. Một số trong những công thức đạo hàm cấp cao của hàm số hay gặp

$eginarrayl y = sin (ax + b) Rightarrow y^(n)(x) = a^nsin left( ax + b + fracnpi 2 ight)\ y = cos (ax + b) Rightarrow y^(n)(x) = a^ncos left( ax + b + fracnpi 2 ight)\ y = frac1ax + b Rightarrow y^(n)(x) = frac( - 1)^na^n.n!(ax + b)^n + 1\ y = e^ax + b Rightarrow y^(n)(x) = a^ne^ax + b.\ y = (ax + b)^alpha Rightarrow y^(n)(x) = a^nalpha (alpha - 1)...(alpha - n + 1)(ax + b)^alpha - n endarray$

2. Phương pháp Lepnit tính đạo hàm cao cấp của hàm số tích

Cho các hàm số $y=u(x),y=v(x)$ có đạo hàm đến cung cấp $n$ khi đó $left< u(x).v(x) ight>^(n)=sumlimits_k=0^nC_n^ku^(k)(x)v^(n-k)(x).$

3. Các ví dụ minh hoạ

Câu 1. Tính đạo hàm $f^(50)(x)$ cùng với $f(x)=(2x^2+x+1)e^5x+2.$

Giải. Ta có:

$eginarrayc f^(50)(x) = sumlimits_k = 0^50 C_50^k(2x^2 + x + 1)^(k)(e^5x + 2)^(50 - k) .\ = 5^50(2x^2 + x + 1)e^5x + 2 + 50(4x + 1)5^49e^5x + 2 + 1225.4.5^48e^5x + 2. endarray$

Câu 2. Cho hàm số $f(x)=dfrac1+xsqrt1-x.$ Tính $f^(100)(0).$

Giải. Ta có

$eginarrayl f(x) = dfrac1 + xsqrt 1 - x = dfrac2 - (1 - x)sqrt 1 - x = 2(1 - x)^ - dfrac12 - (1 - x)^dfrac12.\ f^(100)(x) = 2left< ( - 1)^100left( - dfrac12 ight)left( - dfrac12 - 1 ight)...left( - dfrac12 - 99 ight)(1 - x)^ - dfrac12 - 100 ight>\ - left< ( - 1)^100left( dfrac12 ight)left( dfrac12 - 1 ight)...left( dfrac12 - 99 ight)(1 - x)^dfrac12 - 100 ight>\ = dfrac3.5...1992^99(1 - x)^ - dfrac2012 + dfrac3.5....1972^100(1 - x)^dfrac1972. endarray$

Do đó $f^(100)(0)=dfrac3.5...1972^100(199.2+1)=399dfrac(197)!!2^100,$ trong các số đó $(2n+1)!!=(2n+1)(2n-1)...5.3.1;(2n)!!=2n(2n-2)...6.4.2.$

Câu 3. Tính $f^(100)(x)$ biết $f(x)=x^2cos x.$

Giải. Ta có:

$eginarrayc f^(100)(x) = sumlimits_k = 0^100 C_100^k(x^2)^(k)(cos x)^(100 - k) \ = x^2cos left( x + frac100pi 2 ight) + 100.2x.cos left( x + frac99pi 2 ight) + 4950.2.cos left( x + frac98pi 2 ight)\ = x^2cos x + 200xsin x - 9900cos x. endarray$

Câu 4.

Bạn đang xem: Tính đạo hàm cấp n

Tính đạo hàm cấp cao $y^(5)(x)$ của hàm số $y=ln (2x^2-x).$

Giải. Ta có: $y"=dfrac4x-12x^2-x=dfrac4x-1x(2x-1)=dfrac42x-1-dfrac1x(2x-1)=dfrac42x-1-left( dfrac22x-1-dfrac1x ight)=dfrac22x-1+dfrac1x.$

Vậy $y^(5)(x)=left( dfrac22x-1+dfrac1x ight)^(4)=2dfrac2^4(-1)^44!(2x-1)^5+dfrac(-1)^44!x^5=24left( dfrac32(2x-1)^5+dfrac1x^5 ight).$

Câu 5. Tính đạo hàm cao cấp $f^(100)(0)$ của hàm số $f(x)=dfrac1x^2-x+1.$

Giải. Ta có:

$eginarrayl f(x) = frac1left( x - frac12 ight)^2 + frac34 = frac1left( x - frac12 ight)^2 - left( fracsqrt 3 2i ight)^2 = frac1sqrt 3 ileft( frac1x - frac12 - fracsqrt 3 2i - frac1x - frac12 + fracsqrt 3 2i ight).\ f^(100)(x) = frac1sqrt 3 ileft( frac( - 1)^100100!left( x - frac12 - fracsqrt 3 2i ight)^101 - frac( - 1)^100100!left( x - frac12 + fracsqrt 3 2i ight)^101 ight)\ f^(100)(0) = frac100!sqrt 3 ileft( frac1left( - frac12 - fracsqrt 3 2i ight)^101 - frac1left( - frac12 + fracsqrt 3 2i ight)^101 ight) = frac100!sqrt 3 i( - sqrt 3 i) = - 100! endarray$

Bước cuối độc giả thay dạng lượng giác số phức vào nhằm rút gọn.

Xem thêm: Cách Thay Thế Chữ Trong Word Và Excel, Thay Thế Từ Hay Cụm Từ Trong Word

Cách 2:Ta gồm $(x^2-x+1)y=1,$ đạo hàm cấp cho n hai vế có:

$eginarrayl (x^2 - x + 1)y^(n)(x) + n(2x - 1)y^(n - 1)(x) + n(n - 1)y^(n - 2)(x) = 0\ y^(n)(0) - ny^(n - 1)(0) + n(n - 1)y^(n - 2)(0) = 0 Leftrightarrow fracy^(n)(0)n! - fracy^(n - 1)(0)(n - 1)! + fracy^(n - 2)(0)(n - 2)! = 0\ u_n = fracy^(n)(0)n! Rightarrow u_n - u_n - 1 + u_n - 2 = 0.... endarray$

Câu 6. Tính đạo hàm v.i.p $y^(99)(0)$ của hàm số $y=arcsin x.$

Giải. Ta có:

$eginarrayl y" = frac1sqrt 1 - x^2 Rightarrow (1 - x^2)y" = sqrt 1 - x^2 \ Rightarrow - 2xy" + (1 - x^2)y"" = - fracxsqrt 1 - x^2 = - xy"\ Leftrightarrow (1 - x^2)y"" - xy" = 0. endarray$

Do đó $left( (1-x^2)y""-xy" ight)^(n)=0$ và

$eginarrayl (1 - x^2)y^(n + 2)(x) - n.2x.y^(n + 1)(x) - n(n - 1)y^(n)(x) - xy^(n + 1)(x) - ny^(n)(x) = 0.\ Rightarrow y^(n + 2)(0) = n^2y^(n)(0) Rightarrow y^(99)(0) = 97^2y^(97)(0) = ... = (97.95...3.1)^2y"(0) = (97!!)^2. endarray$

Hiện trên aquabigman.com xuất bản 2 khoá học tập Toán cao cấp 1 với Toán cao cấp 2 dành cho sinh viên năm nhất hệ Cao đẳng, đh khối ngành tài chính của toàn bộ các trường:

Khoá học cung cấp đầy đủ kiến thức và kỹ năng và cách thức giải bài xích tập những dạng toán kèm theo mỗi bài học. Hệ thống bài tập rèn luyện dạng tự luận có lời giải cụ thể tại website sẽ giúp đỡ học viên học cấp tốc và vận dụng chắc chắn là kiến thức. Phương châm của khoá học giúp học viên đạt điểm A thi cuối kì những học phần Toán cao cấp 1 và Toán thời thượng 2 trong những trường tởm tế.

Xem thêm: 1 Tiếng Bao Nhiêu Giây ? 3 Lí Giải Xoay Quanh Đơn Vị Tính Thời Gian

Sinh viên các trường ĐH sau đây có thể học được bộ combo này:

- ĐH kinh tế Quốc Dân

- ĐH nước ngoài Thương

- ĐH yêu đương Mại

- học viện chuyên nghành Tài Chính

- học viện chuyên nghành ngân hàng

- ĐH tài chính ĐH non sông Hà Nội

và những trường đại học, ngành kinh tế của những trường ĐH không giống trên khắp cả nước...